
ML2R Coding Nuggets
Sorting as Linear Programming

Christian Bauckhage
∗

Machine Learning Rhine-Ruhr

Fraunhofer IAIS

St. Augustin, Germany

Pascal Welke
†

Machine Learning Rhine-Ruhr

University of Bonn

Bonn, Germany

ABSTRACT
Linear programming is a surprisingly versatile tool. That is, many

problems we would not usually think of in terms of a linear pro-

gramming problem can actually be expressed as such. In this note,

we show that sorting is such a problem and discuss how to solve

linear programs for sorting using SciPy.

1 INTRODUCTION
We once again revisit the idea of linear programming [9, 10]

and recall that it is all about solving optimization problems of the

following form

z∗ = argmin

z
c⊺z

s.t. Az ⪯ b

C z = d

(1)

The practical application we consider in this note is the funda-

mental problem of sorting an unordered collection of real numbers

in ascending order. Every first year computer science student knows

that this is not difficult and that there are numerous algorithms

(such as quicksort) which sort quickly and reliably.

A much lesser known fact is that the sorting problem can be

expressed as a linear programming problem of the form in (1). Does

this have practical advantages? No, at least not on commodity

hardware! Good conventional sorting algorithms are fast enough

(O(n logn)) to deal with millions of numbers. Linear programs, on

the other hand, are more demanding in that their solution requires

polynomial effort (O(nd ) where d > 2). In this sense, the method

we discuss in this note is of theoretical rather than practical interest.

Our goals are, first of all, to demonstrate that linear programming

is very widely applicable and, second of all, to show that even

well known problems often allow for different points of view. The

resulting computational solutions may come in handy once next

generation devices (such as quantum computers or neuromorphic

computers) become more readily available.

Next, we show how to derive a linear program for the sorting

problem (section 2). This then allows us to apply function linprog
in SciPy’s optimize package to sort lists of numbers (section 3).

Readers who would like to experiment with our exemplary code

should be familiar with NumPy and SciPy [8] and only need to

import numpy as np

import numpy.random as rnd

import scipy.optimize as opt

∗
0000-0001-6615-2128

†
0000-0002-2123-3781

2 THEORY
In what follows, we consider an arbitrary n-dimensional vector of

real numbers

x = [x1,x2, . . . ,xn ]
⊺

(2)

whose entries xi are supposed to be sorted in ascending order.

Working with vectors allows us to unleash linear algebraic tools

on the sorting problem. Indeed, sorting the entries of x can also be

understood as applying an n ×n permutation matrix P such that

the entries of the permuted vector

y = Px (3)

obey y1 ≤ y2 ≤ . . . ≤ yn . This way, the sorting problem becomes

the problem of finding an appropriate permutation matrix.

In order to devise an objective function whose minimization

would yield the sought after permutation matrix, we next introduce

a very specific, auxiliary n-dimensional vector, namely

n = [1, 2, . . . ,n]⊺ (4)

Given this vector, the rearrangement inequality due to Hardy,

Littlewood, and Polya [5] implies that −n⊺P x = −n⊺y is minimal,

if y1 ≤ y2 ≤ . . . ≤ yn . In other words, the expression −n⊺P x is

minimal if the permutation matrix P causes the entries of x to be

sorted in the same order as the entries of n.
Next, we recall that a doubly stochastic matrix is a square,

non-negative matrix whose rows and columns all sum to one. That

is, M ∈ Rn×n is doubly stochastic, if M ⪰ 0n×n , M1n = 1n , and
M⊺1n = 1n where 0n×n denotes the n×n matrix of all zeros and 1n
is then vector of all ones.We also recall that theBirkhoffpolytope
Bn is the convex hull of all doubly stochastic matrices of size n × n
and that the Birkhoff-von Neumann theorem establishes that

the n! vertices of Bn are the n × n permutation matrices [12].

All of this is to say that the problem of sorting the elements of

x , i.e. the problem of finding an appropriate permutation matrix P ,
can be cast as a linear programming problem, namely

P = argmin

M ∈Rn×n
− n⊺M x

s.t.

M ⪰ 0n×n
M1n = 1n

M⊺1n = 1n

(5)

Indeed, due to its constraints, the feasible set of this minimization

problem is the Birkhoff polytope Bn which is a convex set. Also, as

shown in the appendix, the objective −n⊺M x is linear inM . Since

the minimum of a linear function over a convex set coincides with

a vertex of said set and since the vertices of Bn are permutation

matrices, the solution to (5) will be a permutation matrix.

https://en.wikipedia.org/wiki/Linear_programming
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0002-2123-3781
https://orcid.org/0000-0002-2123-3781
https://en.wikipedia.org/wiki/Permutation_matrix
https://en.wikipedia.org/wiki/Rearrangement_inequality
https://en.wikipedia.org/wiki/Doubly_stochastic_matrix
https://en.wikipedia.org/wiki/Birkhoff_polytope
https://en.wikipedia.org/wiki/Doubly_stochastic_matrix


C. Bauckhage and P. Welke

At this point, we have already reached our first major goal. That

is, we have established that sorting can be accomplished via linear

programming.

However, our linear program in (5) is a linear program over

matrices and thus not of the commonly considered form in (1). Since

most software tools for linear programming assume the problem to

be formulated in terms of vectors (SciPy’s linprog is no exception),
we still have work to do before we can turn our new insights into

practical code. In other words, we have to rewrite the problem in

(5) as a problem of the form in (1).

For this purpose, it will be more convenient to work with the

transpose −x⊺M⊺n of the objective function in (5). In the appendix,

we prove the following identity

M⊺n = N m (6)

where the vectorm ∈ Rn
2

and matrix N ∈ Rn×n
2

are defined as

m = vec (M) (7)

N = In×n ⊗ n⊺
(8)

where In×n is the n×n identity matrix and ⊗ denotes the Kronecker

product. In other words, we can express the product of the n × n
matrixM⊺

and the n vector n as the product of an n ×n2 matrix N
and an n2 vectorm. The vectorm = vec (M) contains the stacked

columns ofM and the matrix N = In×n ⊗ n⊺
amounts to

N =


n⊺ 0⊺n 0⊺n · · · 0⊺n 0⊺n
0⊺n n⊺ 0⊺n · · · 0⊺n 0⊺n

· · · · · ·

0⊺n 0⊺n 0⊺n · · · 0⊺n n⊺

 (9)

where 0n denotes the n vector of all zeros.

Similar arguments apply to the expressions in the two equality

constraints of problem (5). First of all, we have

M⊺1n = Cc m (10)

where the vectorm is given as above and matrixCc is defined as

Cc = In×n ⊗ 1⊺n (11)

Second of all, we observe that

M 1n = Cr m (12)

where matrixCr is defined as

Cr = 1⊺n ⊗ In×n (13)

With respect to the inequality constraint of problem (5), we note

thatM ⪰ 0n×n ⇔ −M ⪯ 0n×n as well as

−M ⪯ 0n×n ⇔ −m ⪯ 0n2 ⇔ −In2×n2m ⪯ 0n2 (14)

Using all of this, we can therefore rewrite our matrix linear

programming problem in terms of a vector linear programming

problem, namely

p = argmin

m∈Rn
2

− x⊺N m

s.t.

−In2×n2m ⪯ 0n2

Crm = 1n
Ccm = 1n

(15)

Assuming this problem has been solved, we can recover the

originally sought after permutation matrix as P = mat (p) so as to

then obtain the sorted version y = Px of x .
However, while (15) is beginning to resemble the common form

of a linear programming problem in (1), we are not quite there

yet. The major difference between (1) and (15) is that the former

involves only one equality constraint whereas the latter involves

two.

But we can easily iron out these (mainly notational) differences.

Indeed, the substitutions

c⊺ = −x⊺N (16)

A = −In2×n2 (17)

b = 0n2 (18)

and, crucially

C =

[
Cr
Cc

]
(19)

d =

[
1n
1n

]
(20)

allow us to also write the problem in (15) as follows

p = argmin

m∈Rn
2

c⊺m

s.t. Am ⪯ b

Cm = d

(21)

This is now a problem of the exact same form as in (1). In practice,

we can therefore apply SciPy’s linprog function to solve it. In

other words, we can practically use linear programming to sort a

collection of numbers.

3 PRACTICAL COMPUTATION
Next, we look at how to use SciPy to solve the linear program in

(21) and thus to sort the entries of a vector x ∈ Rn .
To work with a practical example, we first create a random vector

x of, say, n = 5 entries 0 ≤ xi ≤ 100 which we represent as a one-

dimensional NumPy array. To keep things legible, we will force the

xi to be integers and proceed as follows

n = 5

vecX = rnd.randint (100, size=n)

In order to inspect the entries of this random vector, we simply use

print (vecX)

and may obtain something like this

[46 52 12 10 51]

Given x , we next initialize a NumPy array which represent the

auxiliary vector n. To this end, we may use

vecN = np.arange(n) + 1

to obtain

[1 2 3 4 5]

Having completed all these preparatory steps, we next set up

the ingredients of the linear program in (21). To this end, we may

proceed as shown in Listing 1.



Sorting as Linear Programming

Listing 1: setting up the linear programming problem in (21)

1 matI = np.eye(n)
2 vec1 = np.ones(n)
3

4 matN = np.kron(matI , vecN)
5 matCc = np.kron(matI , vec1)
6 matCr = np.kron(vec1 , matI)
7

8 matC = np.vstack ((matCr , matCc))
9 vecD = np.hstack ((vec1 , vec1))
10

11 vecC = -vecX @ matN

Arrays matI and vec1 represent the n × n identity matrix and

the n-dimensional vector of all ones, respectively.

Arrays matN, matCc, and matCr represent the matrices N , Cc ,
andCr which we defined in equations (8), (11), and (13). In order to

compute these arrays, we apply the NumPy function kron which
implements the Kronecker product. In other words, lines 4–6 in

Listing 1 directly correspond to the mathematical expressions in

(8), (11), and (13).

In line 8, we initialize an array matCwhich represents the 2n×n2

matrixC defined in (19) and array vecD in line 9 represents vector

d defined in (20).

Finally, in line 11, we compute an array vecC which represents

vector c in (16). Long-time readers of the series will have noticed

our use of

-vecX @ matN

instead of a more cumbersome expression such as

-np.dot(vecX , matN)

Both expressions are indeed equivalent since the infix operator @
realizes matrix-vector- or matrix-matrix multiplication. While we

rarely used @ in previous notes, PEP 465 recommends its use and

we have lately come to appreciate the convenience it provides.

Attentive readers will have also noticed that we did not imple-

ment matrix A and vector b in (17) and (18), respectively. In our

current setting, this is indeed unnecessary. To understand why, we

recall our discussion in [9] where we pointed out that the question-

able default behavior of SciPy’s linprog function is to assume that

the solution of a linear program is non-negative. In our current

setting, this is actually convenient as we do not have to care about

the non-negativity enforcing inequality constraint in (21).

Hence, we are good to go and can finally invoke function linprog
in SciPy’s optimize module. To solve our problem, we simply call

result = opt.linprog(vecC , A_eq=matC , b_eq=vecD)

Note that, in contrast to our examples in [9, 10], we now set the

parameters A_eq and b_eq which define equality constraints. An-

other difference to our earlier examples is that linprog now issues

the following warning

OptimizeWarning: A_eq does not appear to be of full

row rank. To improve performance, check the problem

formulation for redundant equality constraints.

This is certainly correct; matrixC passed in the argument A_eq
is rank deficient but there is nothing we can do about it. Indeed, the

warning appears to be inconsequential, because printing result
for inspection yields

con: array ([ -3.96327415e-12, ...])

fun: -636.0000000020979

message: 'Optimization terminated successfully.'

nit: 7

slack: array([], dtype=float64)

status: 0

success: True

x: array ([4.88698700e-13, ...])

which indicates that linprog succeeded in finding a solution.

The following statements therefore determine the solution p of

our linear program and the corresponding permutation matrix P

vecP = result.x

matP = vecP.reshape(n,n).T

and subsequent (rounded) printing of the array matP results in

[[0. 0. 0. 1. 0.]

[0. 0. 1. 0. 0.]

[1. 0. 0. 0. 0.]

[0. 0. 0. 0. 1.]

[0. 1. 0. 0. 0.]]

Finally, in order to verify that the above permutation matrix

solves our problem, we use

print ('vecX = ', vecX.astype(float))

print ('vecY = ', matP @ vecX)

and obtain

vecX = [46. 52. 12. 10. 51.]

vecY = [10. 12. 46. 51. 52.]

Success! We have solved a linear programming problem to get a

sorted version y = Px of an unordered vector x .
NOTE: While our example corroborates that sorting can be

done via linear programming, we must point out that this approach

is rather slow and typically suffers from numerical instabilities.

Above, we see (from looking at result.con) that linprog found a

solution with non-zero residuals for the equality constraint of our

problem. As a consequence, the entries of result.x are very close

to 0 or 1 but not exactly 0 or 1. When working with a small (n = 5)

input vector x , this (floating point) imprecision does not have any

noticeable impact. However, tiny errors may add up. Readers are

encouraged to verify this for themselves and see what happens

when considering a vector x of, say, n = 100 elements.

4 SUMMARY AND OUTLOOK
This note showed that linear programming is a surprisingly versatile

tool. That is, many familiar problems we would not usually consider

as a linear programming problem can actually be expressed as such

and therefore be solved using linear programming solvers.

The particular problem we explored was the problem of sorting

a lists of real numbers. We derived a corresponding linear program

and solved it using function linprog in SciPy’s optimize module.

In contrast to the practical applications in our previous notes [9, 10],

the sorting problem required us to work with equality constraints

which was easily done. Yet, for the particular equality constraint we

had to consider, linprog issued a rank deficiency warning. While

this was of little consequence for our toy example of sorting n = 5

numbers, such warnings are there for a reason.

https://www.python.org/dev/peps/pep-0465/


C. Bauckhage and P. Welke

Indeed, we cannot recommend the above approach as a practical

solution. For larger n, it is much slower than conventional sorting

algorithms and will suffer from floating point imprecision.

On the other hand, the fact that we may conceptualize sorting

as a linear algebraic optimization problem is of interest to those

working on next generation computing paradigms. Indeed, (21) can

be further rewritten and cast as a binary unconstrained quadratic

optimization problem for quantum computing [1, 2, 4]. This, too, is

not really remarkable because sorting is not the kind of problem

that calls for heavy machinery. However, the way of thinking we

sketched in this note promises new solutions for much, much more

demanding permutation problems [3, 6, 7, 11] and we will get back

to it later.

A APPENDIX
In this appendix, we prove the not so obvious claims we made in

section 2.

Lemma A.1. If n,x ∈ Rn are two given vectors and M ∈ Rn×n

denotes a variable matrix, then the function f : Rn×n → R with

f
(
M
)
= n⊺M x

is linear inM .

Proof. Consider a,b ∈ R and A,B ∈ Rn×n , then

f
(
aA + b B

)
= n⊺ (aA + b B)x
= an⊺Ax + b n⊺B x = a f

(
A
)
+ b f

(
B
)
□

Lemma A.2. Let n ∈ Rn andM ∈ Rn×n . Then there exist a vector
m ∈ Rn

2

and a matrix N ∈ Rn×n
2

such that

M⊺n = Nm

In particular, the claim hods true for

m = vec (M)

N = I ⊗ n⊺

where I is the n × n identity matrix and ⊗ denotes the Kronecker
product.

Proof. Consider the vector v = M⊺n. In terms of columnmi
of matrix M = [m1, . . . ,mn ], entry vi of v is given by vi =m⊺

i n
or, equivalently, vi = n⊺mi .

If we introduce two (much) larger vectorsm ∈ Rn
2

andni ∈ Rn
2

wherem = vec (M) contains the stacked columns ofM and

n⊺
i =

[
0⊺ · · · 0⊺︸     ︷︷     ︸
i−1 times

n⊺ 0⊺ · · · 0⊺︸     ︷︷     ︸
n−i times

]
with 0 ∈ Rn , we can also write vi = n

⊺
i m.

Hence, if we gather the n different vectors n⊺
i as the rows of a

matrix N ∈ Rn×n
2

, i.e. if we consider

N =


n⊺ 0⊺ 0⊺ · · · 0⊺ 0⊺

0⊺ n⊺ 0⊺ · · · 0⊺ 0⊺

· · · · · · · · · · · · · · · · · ·

0⊺ 0⊺ 0⊺ · · · 0⊺ n⊺

 = I ⊗ n⊺

we find thatv can also be written asv = Nm. □

ACKNOWLEDGMENTS
This material was produced within the Competence Center for

Machine Learning Rhine-Ruhr (ML2R) which is funded by the

Federal Ministry of Education and Research of Germany (grant no.

01|S18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, R. Sifa, and S. Wrobel. 2017. Ising

Models for Binary Clustering via Adiabatic Quantum Computing. In Proc. EMM-
CVPR. Springer.

[2] C. Bauckhage, R. Sanchez, and R. Sifa. 2020. Problem Solving with Hopfield

Networks and Adiabatic Quantum Computing. In Proc. IJCNN. IEEE.
[3] C. Bauckhage, R. Sifa, and S. Wrobel. 2020. Adiabatic Quantum Computing for

Max-Sum Diversication. In Proc. SDM. SIAM.

[4] F. Glover, G. Kochenberger, and Y. Du. 2018. A Tutorial on Formulating and

Using QUBO Models. arXiv:1811.11538 [cs.DS] (2018).
[5] G.H. Hardy, J.E. Littlewood, andG. Polya. 1952. Inequalities. Cambridge University

Press.

[6] J. Kunegis, D. Fay, and C. Bauckhage. 2010. Network Growth and the Spectral

Evolution Model. In Proc. CIKM. ACM.

[7] A. Nowak, S. Villar, A.S. Bandeira, and J. Bruna. 2017. Revised Note on

Learning Algorithms for Quadratic Assignment with Graph Neural Networks.

arXiv:1706.07450 [stat.ML] (2017).
[8] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &

Engineering 9, 3 (2007).

[9] P. Welke and C. Bauckhage. 2020. ML2R Coding Nuggets: Linear Programming for
Robust Regression. Technical Report. MLAI, University of Bonn.

[10] P. Welke and C. Bauckhage. 2020. ML2R Coding Nuggets: Solving Linear Program-
ming Problems. Technical Report. MLAI, University of Bonn.

[11] M.M. Zavlanos and G. J. Pappas. 2008. A Dynamical Systems Approach to

Weighted Graph Matching. Automatica 44, 11 (2008).
[12] G.M. Ziegler. 1995. Lectures on Polytopes. Springer.

https://www.ml2r.de

	Abstract
	1 Introduction
	2 Theory
	3 Practical Computation
	4 Summary and Outlook
	A Appendix
	References

